关键词 |
废旧箱式变电站回收 |
面向地区 |
全国 |
品牌 |
华能 |
额定电压 |
400v |
壳体防护等级 |
IP20 |
产品认证 |
IOS9001 |
加工定制 |
是 |
变压器铁心的作用是加强两个线圈间的磁耦合。为了减少铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联系,线圈由绝缘铜线(或铝线)绕成。一个线圈接交流电源称为初级线圈(或原线圈),另一个线圈接用电器称为次级线圈(或副线圈)。实际的变压器是很复杂的,不可避免地存在铜损(线圈电阻发热)、铁损(铁心发热)和漏磁(经空气闭合的磁感应线)等,为了简化讨论这里只介绍理想变压器。理想变压器成立的条件是:忽略漏磁通,忽略原、副线圈的电阻,忽略铁心的损耗,忽略空载电流(副线圈开路原线圈线圈中的电流)。例如电力变压器在满载运行时(副线圈输出额定功率)即接近理想变压器情况。
变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器、转角变压器、大电流变压器、励磁变压器等。
近来来,干式变压器在国内得到迅猛发展,在京、沪和深等大城市,干变已经占到50%,而在其他大中城市也已经占到20%。干变有四种结构:树脂浇注、加填料浇注、绕包和浸渍式。目前,欧美广泛采用开敞通风式H级干式变压器,是在浸渍式 基础上吸取了绕包式结构的特点并采用Nomex纸后发展起来的新型H级干变,由于售,在我国尚未推广。目前,国内通过短路试验容量的干式配电变 压器是2500KV·A、10/0.4KV;通过短路试验容量的干式电力变压器是16000KV·A、35/10KV。
未采取一般三相法进行实验,而选用了具有故障针对性的分相实验。从空载试验的数据分析,低压侧加压时,a相电流上升速度很快,比b、c相明显偏大,判断低压绕组a相存在短路现象,导致一定电压下空载电流明显变化。为了实现利用电容器方法对电力变压器进行保护,应对电容器所使用的CPU板进行设计。在CPU板的设计中,可选用A/D转换的方式,采用多个CPU、通信接口芯片以及存储器集成在CPU板上,通过、高运算效率,实现了RS232以及CAN总线2种通信方式并存,可供用户自由选择切换。在电量调理板中,既要电量输入又要直流电源的安全性,因此采用了交流输入量的电量调理设备和直流电源设备进行安装,并二者相互隔离。
然而,其在防火问题、扩容问题、检修问题、安全问题等等方面,特别是在安全问题上还存在着严重的功能不足。主要表现在箱体在防雨功能结构的设计上存在一定的功能性缺陷,虽然一般在型式试验时因为对样机进行特殊加工过后能马虎过关。
在实际使用过程中,不难发现,雨天刚过后就打开箱变外门,可明显的发现门内、箱变底板都积存大量的水迹,甚至水流和水荡等;内部结构金属件,特别是箱变的底板、底架等,因雨湿而生锈腐蚀现象也较严重,更严重的是箱变在使用2~3年后就发现底板和围板的底部已污蚀至轻则锈迹斑斑,重则污蚀至穿孔的现象。典型的实例照片如下:
新型箱体在防雨功能结构设计原理上的主要思路是:不使得淋打在箱壳侧面板、围板上的雨水及自上而下在门顶板表面流向门板表面和地面的雨水进入门缝的间隙和围板或门板与箱体底架间的缝隙内,以至达到防雨水进入箱体内腔的功能要求。
我们在理论设计时,门板与门框之间的间隙一般设计成4mm以下。大家都知道,雨水在无风时是垂直向下做自由落体运动的,当有风时,就做斜线下落,而倾斜的相位和斜度是随风向和风力的,按自然规律,倾斜的雨水方向与门缝的直缝重合的机率是基本不存在的,所以,门板的直缝不必特别考虑其防雨水的结构设计,主要考虑门顶横缝上的防雨结构设计就可。